Copied to
clipboard

G = C32xF7order 378 = 2·33·7

Direct product of C32 and F7

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C32xF7, D7:C33, C7:(C32xC6), (C3xC21):7C6, C21:2(C3xC6), (C3xD7):C32, (C32xD7):3C3, C7:C3:(C3xC6), (C3xC7:C3):4C6, (C32xC7:C3):3C2, SmallGroup(378,47)

Series: Derived Chief Lower central Upper central

C1C7 — C32xF7
C1C7C21C3xC21C32xC7:C3 — C32xF7
C7 — C32xF7
C1C32

Generators and relations for C32xF7
 G = < a,b,c,d | a3=b3=c7=d6=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c5 >

Subgroups: 412 in 112 conjugacy classes, 62 normal (8 characteristic)
C1, C2, C3, C3, C6, C7, C32, C32, D7, C3xC6, C7:C3, C21, C33, F7, C3xD7, C32xC6, C3xC7:C3, C3xC21, C3xF7, C32xD7, C32xC7:C3, C32xF7
Quotients: C1, C2, C3, C6, C32, C3xC6, C33, F7, C32xC6, C3xF7, C32xF7

Smallest permutation representation of C32xF7
On 63 points
Generators in S63
(1 43 22)(2 44 23)(3 45 24)(4 46 25)(5 47 26)(6 48 27)(7 49 28)(8 50 29)(9 51 30)(10 52 31)(11 53 32)(12 54 33)(13 55 34)(14 56 35)(15 57 36)(16 58 37)(17 59 38)(18 60 39)(19 61 40)(20 62 41)(21 63 42)
(1 15 8)(2 16 9)(3 17 10)(4 18 11)(5 19 12)(6 20 13)(7 21 14)(22 36 29)(23 37 30)(24 38 31)(25 39 32)(26 40 33)(27 41 34)(28 42 35)(43 57 50)(44 58 51)(45 59 52)(46 60 53)(47 61 54)(48 62 55)(49 63 56)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)
(1 15 8)(2 18 10 7 19 13)(3 21 12 6 16 11)(4 17 14 5 20 9)(22 36 29)(23 39 31 28 40 34)(24 42 33 27 37 32)(25 38 35 26 41 30)(43 57 50)(44 60 52 49 61 55)(45 63 54 48 58 53)(46 59 56 47 62 51)

G:=sub<Sym(63)| (1,43,22)(2,44,23)(3,45,24)(4,46,25)(5,47,26)(6,48,27)(7,49,28)(8,50,29)(9,51,30)(10,52,31)(11,53,32)(12,54,33)(13,55,34)(14,56,35)(15,57,36)(16,58,37)(17,59,38)(18,60,39)(19,61,40)(20,62,41)(21,63,42), (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (1,15,8)(2,18,10,7,19,13)(3,21,12,6,16,11)(4,17,14,5,20,9)(22,36,29)(23,39,31,28,40,34)(24,42,33,27,37,32)(25,38,35,26,41,30)(43,57,50)(44,60,52,49,61,55)(45,63,54,48,58,53)(46,59,56,47,62,51)>;

G:=Group( (1,43,22)(2,44,23)(3,45,24)(4,46,25)(5,47,26)(6,48,27)(7,49,28)(8,50,29)(9,51,30)(10,52,31)(11,53,32)(12,54,33)(13,55,34)(14,56,35)(15,57,36)(16,58,37)(17,59,38)(18,60,39)(19,61,40)(20,62,41)(21,63,42), (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (1,15,8)(2,18,10,7,19,13)(3,21,12,6,16,11)(4,17,14,5,20,9)(22,36,29)(23,39,31,28,40,34)(24,42,33,27,37,32)(25,38,35,26,41,30)(43,57,50)(44,60,52,49,61,55)(45,63,54,48,58,53)(46,59,56,47,62,51) );

G=PermutationGroup([[(1,43,22),(2,44,23),(3,45,24),(4,46,25),(5,47,26),(6,48,27),(7,49,28),(8,50,29),(9,51,30),(10,52,31),(11,53,32),(12,54,33),(13,55,34),(14,56,35),(15,57,36),(16,58,37),(17,59,38),(18,60,39),(19,61,40),(20,62,41),(21,63,42)], [(1,15,8),(2,16,9),(3,17,10),(4,18,11),(5,19,12),(6,20,13),(7,21,14),(22,36,29),(23,37,30),(24,38,31),(25,39,32),(26,40,33),(27,41,34),(28,42,35),(43,57,50),(44,58,51),(45,59,52),(46,60,53),(47,61,54),(48,62,55),(49,63,56)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63)], [(1,15,8),(2,18,10,7,19,13),(3,21,12,6,16,11),(4,17,14,5,20,9),(22,36,29),(23,39,31,28,40,34),(24,42,33,27,37,32),(25,38,35,26,41,30),(43,57,50),(44,60,52,49,61,55),(45,63,54,48,58,53),(46,59,56,47,62,51)]])

63 conjugacy classes

class 1  2 3A···3H3I···3Z6A···6Z 7 21A···21H
order123···33···36···6721···21
size171···17···77···766···6

63 irreducible representations

dim11111166
type+++
imageC1C2C3C3C6C6F7C3xF7
kernelC32xF7C32xC7:C3C3xF7C32xD7C3xC7:C3C3xC21C32C3
# reps1124224218

Matrix representation of C32xF7 in GL7(F43)

6000000
0100000
0010000
0001000
0000100
0000010
0000001
,
6000000
03600000
00360000
00036000
00003600
00000360
00000036
,
1000000
00000042
01000042
00100042
00010042
00001042
00000142
,
42000000
00000360
00036000
03600000
00000036
00003600
00360000

G:=sub<GL(7,GF(43))| [6,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[6,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,42,42,42,42,42,42],[42,0,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,0,36,0,0,36,0,0,0,0,0,0,0,0,0,36,0,0,36,0,0,0,0,0,0,0,0,0,36,0,0] >;

C32xF7 in GAP, Magma, Sage, TeX

C_3^2\times F_7
% in TeX

G:=Group("C3^2xF7");
// GroupNames label

G:=SmallGroup(378,47);
// by ID

G=gap.SmallGroup(378,47);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-7,8104,2709]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^7=d^6=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<